If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-900=0
a = 2; b = 5; c = -900;
Δ = b2-4ac
Δ = 52-4·2·(-900)
Δ = 7225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7225}=85$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-85}{2*2}=\frac{-90}{4} =-22+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+85}{2*2}=\frac{80}{4} =20 $
| 1/40=12/x | | 2x²+27x+95=0 | | 4x+14=+6x+20 | | 3+y=-0.5 | | 6a+3/a=5 | | 2+y=-0.5 | | 1+y=-0.5 | | 0+y=-0.5 | | -1+y=-0.5 | | 121÷x=11 | | 0=3-2y-1 | | 0=2-2y-1 | | F(X)=2x/9x+21 | | 0=1-2y-1 | | 0=0-2y-1 | | –7x+5=–11x–19 | | 0=-1-2y-1 | | 4=-2-5y | | 0,4*(6-4y)=0,5*(7-3y)-1,9 | | -7,2-y=-5,8 | | 2•(3x+4)–2x+8=0 | | 2x+23=5x-23 | | 8x-8=20-4x | | 15+3x=20-x | | x2=−7 | | 23-7k=3(12-3(5-k) | | x.5=1.2 | | (2x-40)÷23=12 | | 4(2x-7)+4=8x | | 4(x²-3)=52 | | 16+11i÷16-11i=0 | | 12÷y-1=2÷3 |